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Problematic pornography use (PPU) is the most common manifestation of the newly introduced compulsive
sexual behavior disorder diagnosis in the 11th revision of the International Classification of Diseases.
Research related to PPU has proliferated in the past two decades, but most prior studies were characterized
by several shortcomings (e.g., using homogenous, small samples), resulting in crucial knowledge gaps and a
limited understanding concerning empirically based risk factors for PPU. This study aimed to identify the
most robust risk factors for PPU using a preregistered study design. Independent laboratories’ 74 preexisting
self-report data sets (Nparicipants = 112,397; Neounuies = 16) were combined to identify which factors can best
predict PPU using an artificial intelligence-based method (i.e., machine learning). We conducted random
forest models on each data set to examine how different sociodemographic, psychological, and other char-
acteristics predict PPU, and combined the results of all data sets using random-effects meta-analysis with
meta-analytic moderators (e.g., community vs. treatment-seeking samples). Predictors explained 45.84%
of the variance in PPU scores. Out of the 700+ potential predictors, 17 variables emerged as significant pre-
dictors across data sets, with the top five being (a) pornography use frequency, (b) emotional avoidance por-
nography use motivation, (c) stress reduction pornography use motivation, (d) moral incongruence toward
pornography use, and (e) sexual shame. This study is the largest and most integrative data analytic effort in
the field to date. Findings contribute to a better understanding of PPU’s etiology and may provide deeper
insights for developing more efficient, cost-effective, empirically based directions for future research as
well as prevention and intervention programs targeting PPU.

General Scientific Summary

This study suggests that the top five predictors of problematic pornography use (PPU) were frequency of
use, emotional avoidance pornography use motivation, stress reduction pornography use motivation,
moral incongruence, and sexual shame. These findings provide empirically based key insights to
develop effective, scientifically driven prevention and intervention programs for PPU that are currently
absent from the literature and health care systems.
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After four decades of clinical attention and a marked increase in
scientific studies on out-of-control sexual behaviors (Grubbs &
Kraus, 2021; Grubbs, Hoagland, et al., 2020), compulsive sexual
behavior disorder (CSBD) has now been included in the 11th revision
of the International Classification of Diseases (Kraus et al., 2018;
World Health Organization, 2022). CSBD is defined as a persistent
pattern of uncontrollable sexual impulses, urges, and behaviors,
resulting in clinically significant distress and adverse consequences,
with prevalence estimates ranging between 2% to 10% (Bothe et al.,
2023; Bothe, Nagy, et al., 2024; Bothe, Potenza, et al., 2020; Briken
etal., 2022; Dickenson et al., 2018; Grubbs, Reid, et al., 2023; Kraus
et al., 2018; Lewczuk, Wizla, et al, 2022; World Health
Organization, 2022). The most common behavioral manifestation
of CSBD is problematic pornography use (PPU) (Reid et al.,
2012), defined as a persistent pattern of uncontrollable pornography
use along with significant distress and functional impairment (Kraus
etal., 2018; World Health Organization, 2022). Despite the introduc-
tion of the official CSBD diagnosis, some key questions have yet to
be addressed due to previous studies’ theoretical and methodological
limitations (e.g., small, homogenous samples) (Grubbs, Hoagland, et
al., 2020). One such key question pertains to potential risk factors for
PPU. In the present study, we aimed to identify risk factors contrib-
uting to PPU using an innovative, multilab approach with an artificial
intelligence-based method (i.e., machine learning [ML]).

Past literature suggests that PPU is likely to be present in more
than 80% of individuals with CSBD, potentially due to widespread
internet access (Grubbs, Hoagland, et al., 2020; Reid et al., 2012).
Based on web traffic data, pornography use has increased by
310% since the early 2000s (Lewczuk, Wdjcik, et al., 2022).
Nationally representative and large-scale studies suggest that, in
the past 20 years, 70%-94% of adults (Grubbs, Kraus, et al.,
2019; Herbenick et al., 2020; Lewczuk et al., 2020; Rissel et al.,
2017) and 42%-98% of adolescents (Bothe, Vaillancourt-Morel,
et al., 2020; Donevan et al., 2022; Wolak et al., 2007; Wright
et al., 2020) reported using pornography.

However, pornography use qualifies as PPU only for a small subset of
users, resulting in significant distress and legal, financial, or relationship
issues (Grubbs, Kraus, et al., 2019; Lewczuk et al., 2020; Rissel et al.,
2017; Sniewski & Farvid, 2020). Recent estimates suggest that 1%—
38% of adults and 5%—14% of adolescents may experience PPU
(Bothe, Vaillancourt-Morel, et al., 2021; Grubbs, Kraus, et al., 2019;
Lewczuk et al., 2020; Rissel et al., 2017; Stulhofer et al., 2020; Svedin
et al., 2011). These varying prevalence estimates may stem from real
group differences (e.g., PPU may be higher in some cultures or among
specific populations, such as samples including only men; Ahorsu
et al., 2023; Bothe et al., 2023; Bothe, Nagy, et al., 2024; Grubbs,
Hoagland, et al., 2020). However, they may also derive from the different
conceptualizations and measurements of PPU, leading to even higher
prevalence estimates for PPU than for CSBD in some cases (Bothe
et al., 2023; Bothe, Nagy, et al., 2024; Chen, Jiang, Wang, et al.,
2022; Fernandez & Griffiths, 2021). There is a long-standing debate
on the classification and symptomatology of PPU, with some suggesting
that PPU may be best conceptualized as a behavioral addiction, while
others consider it as an impulse control or a compulsivity-related disorder

(Bothe et al., 2022; Bothe, Téth-Kirdly, et al., 2019; Brand et al., 2020;
Castro-Calvo et al., 2022; Kraus et al., 2016; Ley et al., 2014; Rumpf &
Montag, 2022; Sassover & Weinstein, 2020).

Nevertheless, even at the lowest ends of these prevalence estimates,
PPU may be as common as well-established mental health issues such
as mood disorders (Polanczyk et al., 2015; Steel et al., 2014); yet, it
has received significantly less scientific attention to date (Grubbs &
Kraus, 2021; Grubbs, Hoagland, et al., 2020). Consequences of men-
tal disorders as well as of PPU might be prevented and treated, reduc-
ing potential public health impacts, if sufficient scientific evidence
was available to develop cost-effective, evidence-based prevention
and intervention programs (Grubbs, Floyd, et al., 2023; Grubbs,
Hoagland, et al., 2020; Nelson & Rothman, 2020). In line with this
notion, one crucial step to achieve this goal is to better understand
which risk factors are related to PPU (Grubbs & Kraus, 2021;
Grubbs, Hoagland, et al., 2020).

Several theoretical models have been developed to describe the
potential etiology of PPU (e.g., the interaction of person-affect-
cognition-execution model, the moral incongruence model; Brand
et al., 2019; Grubbs, Perry, et al., 2019). These models are similar
in that they propose several different factors contributing to the devel-
opment of PPU, and potential interactions between structural, situa-
tional, psychological, and biological characteristics. In the past two
decades, more than 120 empirical studies examined PPU, among
which many tested theoretical models, and examined potential risk
and protective factors (Grubbs, Hoagland, et al., 2020). Still, a key
challenge for the field has been to draw clear inferences from diverse
findings and available data and make this knowledge cumulative. One
crucial obstacle these studies have faced is the limited number of par-
ticipants and number of variables that could be included in one study
(e.g., the cost of studies increases as more participants and variables
are included) and the lack of analytical methods to handle such com-
plex models (Grubbs, Hoagland, et al., 2020). Another important
shortcoming is the focus on small, homogenous, Western, educated,
industrialized, rich, and democratic (WEIRD) samples (Bothe,
Vaillancourt-Morel, et al., 2019; Chen, Jiang, Wang, et al., 2022;
Grant Weinandy et al., 2023; Grubbs & Kraus, 2021; Grubbs,
Hoagland, et al., 2020; Jennings et al., 2021). These limitations call
for large data sets with a wide range of variables, and the application
of novel statistical methods that can handle the simultaneous consid-
eration of hundreds of factors to provide accurate predictions concern-
ing individuals’ PPU and related risk factors.

Artificial intelligence-based data analytic methods represent an
effective approach for developing algorithms capable of solving
these complex problems and outperform traditional regression methods
in predictive tasks (e.g., predicting suicidal risk) (Dwyer et al., 2018;
Walsh et al., 2017, 2018). Specifically, ML approaches focus on learn-
ing statistical functions from multidimensional data sets, including
many potential predictors, and their linear and nonlinear interactions,
to make generalizable predictions about individuals, providing crucial
information about potential risk factors. Therefore, ML can produce
meaningful, accurate, replicable, and generalizable models that can
improve current theoretical models and be easily integrated into clinical
care (Dwyer et al., 2018; Orru et al., 2020; Yarkoni & Westfall, 2017).
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Although conducting ML studies does not necessarily require the
use of multiple data sets, a collectivistic approach involving several
research laboratories and data collection efforts is beneficial for iden-
tifying risk factors for PPU. It provides greater statistical power due
to the larger sample size; a high number of measured variables; and a
greater generalizability of findings to diverse populations as data sets
from different cultures, gender, age, and treatment-seeking groups
can be included in a study (Joel et al., 2020). In the present study,
we combined data from preexisting data sets from multiple indepen-
dent laboratories, and used preregistered ML and meta-analytic
methods to document the most robust predictors of PPU. Given
that this study was exploratory in nature and ML is a data-driven
method, there were no a priori hypotheses.

Method

Technical details of the method and results sections can be found
in the online supplemental materials.

Data Solicitation, Data Eligibility, and Data Availability

Using the reference list of the most recent overarching systematic
review on CSBD and PPU (Grubbs, Hoagland, et al., 2020), we con-
tacted all researchers who might have collected data including a PPU
measure, as well as others who might have access to eligible data.
Overall, we contacted 98 researchers and laboratories worldwide
between the fall of 2020 and spring of 2021 to provide available
data sets for this study. The preregistered requirements for eligible
data sets were as follows: PPU was assessed with a clinical interview
or a well-validated scale; the study used a cross-sectional or longitu-
dinal design; the study collected self-report or behavioral data from
adolescent or adult populations; and the data were published or
unpublished. Studies with experimental or dyadic designs were
excluded. Overall, we received 74 eligible data sets (Nparicipants =
112,397; Neounwies = 16) with a codebook describing the study
design and all variables (Table 1). The list of all data sets, collabo-
rators, and publications is available in eTable 1 in the online supple-
mental materials. As the study included data on sensitive topics, data
sets were not made publicly available.

Preregistration and Related Open Science Materials

The study design (https:/ost.io/jgkzr/) and analysis plan (https:/osf
.do/xaek2/?view_only=801f387a797043cf9aae5485c6e6ef29) were
preregistered on the Open Science Framework (OSF) (project’s main
page: https:/fosf.io/jaemx/; Bothe, Vaillancourt-Morel, et al., 2024).
Deviations from the preregistered plan are described in the online sup-
plemental materials. Meta-analytic data, codebooks, complementary
analyses, and related materials are available on the OSF (https:/osf
.io/b2wa5/?view_only=59746e81e01d420c8b39fdcc79cd95db).

Measures

The PPU score was the outcome variable, assessed by different, well-
validated scales. The long and short versions of the Problematic
Pornography Consumption Scale (Bothe et al., 2018; Bothe, T6th-
Kirdly, Demetrovics, et al., 2021; Bothe, Vaillancourt-Morel, et al.,
2021) measure PPU based on the six-component model of addiction
(Griffiths, 2005), including salience, tolerance, mood modification,
conflict, relapse, and withdrawal symptoms. The long and short

versions of the Cyber Pornography Use Inventory (Grubbs et al.,
2010, 2015; Grubbs & Gola, 2019) assess addictive/compulsive use
of pornography, access efforts (i.e., efforts made to be able to view por-
nography), and emotional distress due to pornography use. The Brief
Pornography Screen (Kraus et al., 2020) was developed as a screener
to assess impaired control over pornography use and related negative
emotions (e.g., guilt after use). The Problematic Pornography Use
Scale (Kor et al., 2014) was developed based on four common charac-
teristics of substance use disorders and behavioral addictions, including
excessive use, control difficulties, pornography use to avoid negative
emotions, and distress and functional problems due to pornography
use. The Compulsive Internet Use Scale-sexually explicit media
(Downing et al., 2014) was developed on the basis of the addiction
framework, and assesses loss of control, coping/mood modification,
conflict, preoccupation, and withdrawal symptoms. Finally, the
Compulsive Pornography Consumption Scale (Noor et al., 2014) mea-
sures obsessive thoughts about pornography and its compulsive use
based on the characteristics of obsessive—compulsive disorder
(American Psychiatric Association, 2013).

All other variables in the data sets were considered predictor vari-
ables. Specific predictors varied from data set to data set. We excluded
four types of variables from the potential predictors based on preestab-
lished criteria described in the preregistered study design: scales
assessing compulsive sexual behavior or any other variant of it, non-
validated author-constructed scales, scales or items assessing the con-
sequences of pornography use, and open-ended questions.

Adopting the approaches of prior work (Joel et al., 2020), when a
data set and its corresponding codebook had been received, Bedta
Bothe and two research assistants studied these materials, identified
any information that was missing from the codebook, and requested
the scholar(s) who had provided the data set to complement the code-
book with the missing information. The codebook contained detailed
metadata of the data set, including the sample size, any inclusion and
exclusion criteria, nationality of participants, description of the pop-
ulation (i.e., adult vs. adolescent sample, community vs. treatment-
seeking sample), dates of data collection, type of the study (i.e., cross-
sectional vs. longitudinal design), type and timeframe of PPU assess-
ment, whether the data had already been published, how missing data
were coded, and any other distinguishing features of the data set that
the scholars providing the data set wanted to share. In addition, the
codebook included information about all variables in the data set.
This information included all variables’ names; a brief description
of them; the names, abbreviations, number of items, and factors com-
prising a scale; the references of the scales; the scoring of each var-
iable; and any notes that the scholars wanted to share. After
ensuring that all necessary information was available in the data set
and its related codebook, Bedta Bothe studied all information in
the codebook about all variables in each data set. Then, a systematic
coding system was developed based on the identified constructs that
were measured across data sets, and each variable was labeled using a
common code (e.g., different measures of impulsivity were labeled as
“impulsivity”). After finalizing the coding of all variables in each
data set, Zsombor Hermann cross-checked and verified the appropri-
ate use of these common labels. Out of the 3,987 variables, a total of
744 predictor categories were identified. The list of all variables and
their coded names is available on the OSF (https:/osf.io/b2wa5/?
view_only=59746e81e01d420c8b39fdcc79cd95db) (codebook of
variables tab of the Excel sheet). This coded list of variables was
used to assess the predictive success rate of each construct.
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Statistical Analyses

All analyses were conducted in R (V4.2.2) (R Core Team, 2022),
and the used packages are listed in eTable 2 in the online supplemen-
tal materials. To unify the method of dealing with missing data in
each data set, only data from participants who did not have missing
data on the PPU scale were used, as each data set used different
inclusion criteria for participation and assessing PPU among partic-
ipants. We used the MissForest (Stekhoven & Biihlmann, 2012) ran-
dom forest imputation algorithm to handle missing data on predictor
variables (Lang & Little, 2018; Newman, 2014; Stekhoven &
Biihlmann, 2012). Following previous work (Joel et al., 2020), we
used random forest models on each data set with the PPU score as
the dependent/outcome variable,' an ML method that builds on
classification and regression trees to test the strength of each avail-
able predictor with a recursive partitioning process (Berk, 2010;
Breiman, 2001). The variable selection using random forests
package was used for variable selection, as it is able to select only
those predictors that meaningfully contribute to the model (Genuer
et al., 2010, 2015). Briefly, the results of this analysis show
how much variance of the outcome variable could be predicted by
the predictor variables, and which variables made the greatest
contributions.

Following prior work (Joel et al., 2020), the results from the 84
models® were combined using random-effects meta-analysis (Hedges
& Vevea, 1998) by transforming the percentage of explained variance
in the outcome variable from the random forest models into effect size
indicators (Harrer et al., 2021). Then, the results of the meta-analysis
were transformed back into explained variance. Following the prereg-
istered analysis plan, we examined 10 meta-analytic moderators (e.g.,
PPU scale used, community vs. treatment-seeking sample). Given the
high level of heterogeneity in the meta-analysis that could not be
explained by the preestablished meta-analytic moderators, we con-
ducted exploratory subgroup analyses. We examined the importance
of the contribution of those predictor variables that were included in
at least 10 data sets and that emerged as significant predictors in at
least 50% of the data sets.

Results

Descriptive information for each data set and the results of the ran-
dom forest models are presented in Table 1. On average, data sets
included 43 potential predictors (ranging between four to 260 pre-
dictors across data sets), of which 11 were included in the final mod-
els. The explained variances ranged from 6.54% to 85.17% across
the data sets.> The meta-analytic results, Q(79) = 6,194.1, p < .001,
=07, I*=98.70%, H* =74.65%, showed that the predictors
explained 45.84% (95% confidence interval [41.57%, 49.98%]) of
the variance in the PPU scores. The most robust predictors of PPU
(i.e., 17 variables that were included in at least 10 data sets and
that emerged as significant predictors in at least 50% of the data
sets) are presented in Table 2.* The top five predictors were fre-
quency of use, emotional avoidance pornography use motivation,
stress reduction pornography use motivation, moral incongruence
toward pornography use, and sexual shame. As demonstrated in
Figure 1, predictive power increased as the number of identified pre-
dictors included in the model increased.

Out of the 10 preestablished meta-analytic moderators, only the
number of variables in the data set and the number of predictors
selected in the final model had significant effects on the results

(Table 3). Having more variables, F(1, 82)=15.55, p=.021,
2= .07, = 98.75%, and having more predictors in the final
model, F(1, 82) = 16.86, p <.001, t* = .06, I* = 98.63%, contrib-
uted to heterogeneity, although the size of these contributions was
negligible. These results suggest that the data sets’ characteristics
(e.g., country of data collection) did not play a crucial role in the het-
erogeneity and predictive power of the models.’

Given considerable heterogeneity, we conducted exploratory, post
hoc subgroup analyses to explore whether this heterogeneity could
be explained by the presence of the most robust predictors included
in the models (i.e., the variable is not a predictor vs. the variable is a
predictor) or the level of missing data (Table 4). Results suggested
that one pornography use-related characteristics (i.e., moral incon-
gruence toward pornography use) and two negative emotions-related
characteristics (i.e., depression symptoms and blaming others: trans-
ferring blame from self to others) contributed significantly to the het-
erogeneity of the results (Table 4). However, when all these
variables were included in one model, F(3, 80) =10.52, p < .001,
= .05, I = 98.35%, only blaming others, B =.39, SE=0.11,
p <.001, contributed significantly. Yet, similar to the results
with the meta-analytic moderators, these variables’ effect on hetero-
geneity was small.

! When starting the study, the aim was not only to examine the predictors
of PPU using cross-sectional data, but also the predictors of change in PPU
over time using longitudinal datasets (https:/osf.io/jgkzr). However, during
data preparation and analysis, major issues were identified that made it impos-
sible to conduct the preregistered longitudinal analyses. These issues
included the low number of longitudinal data sets; high levels of missing
data in the different waves of data collections; no longitudinal changes in
PPU over time in several datasets; and when changes were present, they
were not linear (see eFigure 1 in the online supplemental materials).
Therefore, we used the first data collection waves from the longitudinal
data sets as cross-sectional data and conducted the same analyses on these
data sets as on the cross-sectional ones.

2 For the sake of comprehensiveness, in cases when more than one PPU
measure (e.g., both the Brief Pornography Screen and the Cyber-
Pornography Use Inventory) were included in a given data set, we conducted
the analysis using each PPU measure as an outcome variable in separate mod-
els. Therefore, the total number of models is greater than the total number of
data sets.

3 We used the hyperparameter of 71, = 500 in the original version of the
manuscript. During the review process, it was requested to test if the use of
different n.. values would result in changes in prediction quality. We tested
the random forest models with 7., = 1,000, nyee = 1,500, Ryee = 2,000, and
Nee = 5,000. Details of the conducted analysis can be found in the online
supplemental materials. The findings suggested that the different n.. values
might not have affected the results substantially, corroborating the robustness
of the results.

“ The predictive power of the variables that were included in at least 10 data
sets (not restricted to those that were predictors in at least 50% of the data sets)
and the predictive power of all variables (without any restrictions) are avail-
able on OSF in the online supplemental materials (https:/osf.io/b2wa5/?
view_only=59746e81e01d420c8b39fdcc79cd95db).

3 We used the cutoff of 40% of missing data in the original version of the
manuscript (i.e., when more than 40% were missing on a given variable or
when a participant had more than 40% of missing data, these variables or par-
ticipants were removed from the analyses, respectively). During the review
process, it was requested to test if the use of a more conservative cutoff of
30% of missing data would result in changes in the results. We conducted
all the analyses with only data sets that had less than 30% of missing data.
Details of the conducted analysis can be found in the online supplemental
materials. The findings suggested that the level of missing data might not
have affected the results substantially, corroborating the robustness of the
results.
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Table 2
The Most Robust Predictors of Problematic Pornography Use
Included in data sets Significant predictor in % of
Variable (out of 84) the data sets it was included
1. Pornography use frequency 65 93.85
2. Emotional avoidance pornography use motivation 13 84.62
3. Sexual shame 13 84.62
4. Moral incongruence toward pornography use 33 81.82
5. Stress reduction pornography use motivation 10 80.00
6. Fantasy pornography use motivation 12 75.00
7. Duration of pornography use per occasion 40 65.00
8. Blaming others 11 63.64
9. Anxiety symptoms 24 62.50
10. Guilt 13 61.54
11. Treatment seeking for pornography use 10 60.00
12. Self-perceived addiction to pornography 12 58.33
13. Depression symptoms 26 53.85
14. Gender" 76 52.63
15. Loneliness 18 50.00
16. Attachment anxiety 16 50.00
17. Sexual function 10 50.00

Note. This table includes all variables that were included in at least 10 data sets and that emerged as significant
predictors in at least 50% of the data sets in which they were included.

 Studies included in the present analyses either assessed participants’ sex assigned at birth or gender identity, depending
on the study design, aims of the study, and the sociocultural context in which the study was conducted. Therefore, for the
sake of parsimony and statistical power, we included both the sex assigned at birth and the gender identity in the

“gender” variable in the present analyses.

Discussion

The present study is the largest collaborative and most integrative
data analytic effort to date in the field of CSBD research to identify
risk factors that consistently contribute to PPU. Out of more than
700 potential variables, the final list of risk factors included char-
acteristics specifically related to pornography use (e.g., moral

Figure 1

incongruence) as well as more general factors (e.g., depressive
symptoms). Not only do the present findings contribute to the
refinement of current theoretical models but can also provide
empirically based knowledge to develop effective, scientifically
based prevention and intervention programs targeting PPU,
which are currently missing from the literature and clinical care
(Antons et al., 2022; Borgogna et al., 2022; Grubbs, Hoagland,

Visual Presentation of the Most Robust Predictors’ Additive Contribution to the Predictive

Power of the Random Forest Models
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Number of the most robust predictor variables in the dataset (» = 17 variables)

Note. Error bars represent the 95% confidence intervals. The number of data sets with the given number of
predictor variables is shown above the error bars. No data set included more than nine of the most robust

predictors.
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Table 3
Results of the Metaregression and Subgroup Analyses With the Preregistered Meta-Analytic Moderators
Explained
Variable k variance (%) 95% CI P I (%) 95% CI P Adjusted p
PPU scale used” 265 1.000
PPCS 28 4545 [38.43%, 52.12%]  <.001  98.87  [98.70%, 99.02%]
BPS 14 40.27 [31.01%, 49.19%]  <.001 ~ 96.83  [95.78%, 97.62%]
CPUI 31 48.79 [40.69%, 56.33%]  <.001  98.54  [98.31%, 98.74%]
PPUS 9 52.34 [40.34%, 62.89%]  <.001  98.03  [97.30%, 98.56%]
Timeframe of asking about PPU® 761 1.000
No timeframe specified 33 47.06 [38.75%, 54.84%] <.001  98.61  [98.40%, 98.79%]
Past 6 months 50 45.66 [40.93%, 50.23%]  <.001  98.63  [98.47%, 98.78%]
Who completed the PPU scale® 399 1.000
No timeframe specified 28 4145 [35.04%, 47.67%]  <.001  98.31  [98.01%, 98.56%]
Past 6 months users 17 52.38 [35.04%, 47.67%] <.001  98.96  [98.75%, 99.13%]
Past 12 months users 15 44.86 [34.48%, 54.55%] <.001  98.97  [98.75%, 99.15%]
Lifetime users 22 46.64 [38.29%, 54.48%]  <.001  97.63  [97.09%, 98.07%]
Country of data collection 271 1.000
International/not specified 7 36.46 [14.86%, 57.49%] .001  99.10  [98.81%, 99.32%]
Canada 5 34.60 [8.20%, 61.44%] .008  98.68  [98.06%, 99.10%]
China 8 49.72 [41.14%, 57.63%]  <.001  98.57  [98.07%, 98.94%]
Hungary 18 42.98 [33.95%, 51.55%]  <.001  98.80  [98.56%, 99.00%]
United States of America 30 50.63 [42.33%, 58.27%] <.001  98.83  [98.66%, 98.99%]
Publication status® 967 1.000
Unpublished 48 45.77 [39.44%, 51.82%] <.001  98.61 [98.43%, 98.76%]
> 1 publication 36 45.94 [40.2%, 51.45%] <.001 9875  [98.58%, 98.90%]
Sample Type 1 <.001 102 0.815
Community sample 76 46.81 [42.32%, 51.15%]  <.001  98.64  [98.51%, 98.75%]
Treatment-seeking sample 8 36.32 [22.01%, 50.31%] <.001 98.92 [98.58%, 99.18%]
Sample Type 2° NA NA
Adult sample 77 47.09 [42.75%, 51.29%] <.001  98.58  [98.44%, 98.70%]
Study design .631 1.000
Cross-sectional 74 46.15 [41.46%, 50.68%]  <.001  98.77  [98.66%, 98.88%]
Longitudinal 10 43.63 [32.64%, 53.91%] <.001  96.39  [94.85%, 97.48%]
Variable k Estimate SE t df P
Year of data collection (start date)
Intercept 84 —39.18 24.83 —1.58 82 118
Value 84 0.02 0.01 1.61 82 111
Year of data collection (end date)
Intercept 84 —30.31 25.70 —1.18 82 241
Value 84 0.02 0.01 1.21 82 229
Number of predictors used in the
random forests model
Intercept 84 0.75 0.04 17.28 82 <.001
Value 84 <0.01 <0.01 2.36 82 .021
Number of predictors selected in the
final random forests model
Intercept 84 0.63 0.05 11.69 82 <.001
Value 84 0.02 <0.01 4.10 82 <.001

Note.  When a model ID includes a letter (e.g., 33a, 33b), it represents that the data set included more than one PPU measure, and thus, all PPU measures were
considered outcome variables in separate models. p values adjusted using the Holm method (n =8 tests). CI = confidence interval; PPU = problematic
pornography use; PPCS =long or short version of the Problematic Pornography Consumption Scale; BPS = Brief Pornography Screen; CPUI = long or
short version of the Cyber-Pornography Use Inventory; PPUS = Problematic Pornography Use Scale; NA = not applicable; CIUS-SEM = Compulsive
Internet Use Scale-SEM; CPCS = Compulsive Pornography Consumption Scale; SEM = sexually explicit media.

It was not possible to include the CIUS-SEM and the CPCS in this analysis as fewer than five studies used them. ° It was not possible to include the category “past
3 months” in this analysis as fewer than five studies used it. It was not possible to include the categories “past week users” and “past month users” in this analysis
as fewer than five studies used them. 9 It was not possible to include Bangladesh, Germany, Iran, Israel, Malaysia, the Netherlands, Poland, Portugal, Slovakia, and
Spain in this analysis as fewer than five studies were conducted in these countries. ¢ At the time of data solicitation. It was not possible to include the categories
“adolescents” and “young adults (16-29 years),” defined by the original study, in this analysis as fewer than five studies were conducted in these populations.

et al., 2020; Turner et al., 2022; Yarkoni & Westfall, 2017). Given
the abundance of examined variables, we focused on the constructs
that may have the strongest effect on the current understanding of
PPU and public health.

Eight out of the 17 predictors of PPU were related to pornography
use characteristics, with pornography use frequency having the

strongest predictive power. These results are consistent with the find-
ings of a recent meta-analysis, suggesting that the frequency of por-
nography use may be an indicator of PPU, given the moderate,
positive association (Chen, Jiang, Wang, et al., 2022). However, it
might not be a crucial predictor of PPU in itself as prior studies
reported that pornography use frequency might be a peripheral
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Table 4
Exploratory Results of Subgroup Analyses With the Most Robust Predictor Variables and the Level of Missing Data
Explained
Variable k  variance (%) 95% CI p I (%) 95% CI p Adjusted p*
Gender .021 .349
Not predictor 44 50.25 [43.76%, 56.34%] <.001 9891 [98.78%, 99.02%]
Predictor 40 40.82 [35.67%, 45.86%] <<.001 97.63  [97.24%, 97.96%]
Pornography use frequency .082 1.000
Not predictor 23 39.96 [31.65%, 48.00%] <<.001 98.71 [98.48%, 98.91%]
Predictor 61 48.00 [43.01%, 52.78%] <.001 98.44 [98.27%, 98.60%]
Duration of pornography use per occasion .096 1.000
Not predictor 58 43.38 [38.39%, 48.22%] <.001 98.24  [98.03%, 98.43%]
Predictor 26 51.15 [42.88%, 58.75%] <.001 98.97 [98.81%, 99.10%]
Emotional avoidance pornography use motivation .004 .060
Not predictor 73 43.90 [39.27%, 48.40%] <.001 98.42 [98.25%, 98.56%]
Predictor 11 5791 [48.56%, 66.10%] <.001 98.37 [97.88%, 98.75%]
Stress reduction pornography use motivation .027 453
Not predictor 76 44.72 [40.13%, 49.17%] <.001  98.47 [98.32%, 98.61%]
Predictor 8 55.98 [45.13%, 65.43%] <.001 98.11 [97.37%, 98.64%]
Fantasy pornography use motivation .014 245
Not predictor 75 44.28 [39.75%, 48.68%] <.001 98.41 [98.25%, 98.56%]
Predictor 9 58.02 [46.13%, 68.10%] <.001 98.62 [98.17%, 98.95%]
Moral incongruence toward pornography use <.001 .008
Not predictor 57 41.03 [35.97%, 45.98%] <.001 98.56 [98.39%, 98.70%]
Predictor 27 55.39 [48.70%, 61.53%] <.001 98.75 [98.54%, 98.92%]
Self-perceived addiction to pornography .021 352
Not predictor 77 44.75 [40.22%, 49.15%] <.001  98.49  [98.34%, 98.62%]
Predictor 7 57.08 [45.14%, 67.27%] <.001  99.19  [98.94%, 99.38%]
Treatment seeking for pornography use .082 1.000
Not predictor 78 44.78 [40.39%, 49.04%] <.001 98.39  [98.23%, 98.53%]
Predictor 6 58.70 [38.22%, 74.24%] <.001  97.52  [96.20%, 98.38%]
Sexual function 224 1.000
Not predictor 79 46.48 [42.10%, 50.71%] <.001  98.70  [98.58%, 98.81%]
Predictor 5 35.30 [11.64%, 58.8%] .004  97.64 [96.24%, 98.52%]
Sexual shame .003 .058
Not predictor 73 42.97 [38.86%, 46.98%] <.001 98.39  [98.22%, 98.54%]
Predictor 11 62.99 [48.77%, 74.18%] <.001 98.46 [98.01%, 98.81%]
Anxiety symptoms .008 0.139
Not predictor 69 42.35 [38.47%, 46.15%] <.001  97.60 [97.31%, 97.86%]
Predictor 15 60.23 [46.51%, 71.39%] <.001 99.24  [99.09%, 99.36%]
Depression symptoms .002 .026
Not predictor 70 42.83 [38.39%, 47.15%] <.001 98.54 [98.40%, 98.68%]
Predictor 14 59.77 [49.43%, 68.60%] <<.001 98.82 [98.55%, 99.04%]
Guilt .046 785
Not predictor 76 44.05 [39.86%, 48.13%] <.001 98.46 [98.30%, 98.60%]
Predictor 8 61.28 [41.08%, 76.22%] <.001 9897  [98.65%, 99.21%]
Blaming others <.001 .001
Not predictor 77 43.02 [39.1%, 46.85%]  <.001 98.31 [98.14%, 98.47%]
Predictor 7 71.41 [56.17%, 82.10%] <<.001 98.13  [97.33%, 98.68%]
Attachment anxiety 298 1.000
Not predictor 76 44.94 [40.59%, 49.17%] <.001  98.64 [98.51%, 98.76%]
Predictor 8 54.11 [33.06%, 70.84%] <.001 98.84 [98.46%, 99.12%]
Loneliness 150 1.000
Not predictor 75 44.34 [40.16%, 48.41%] <.001 98.41 [98.25%, 98.55%]
Predictor 9 57.41 [36.36%, 73.53%] <.001 99.42  [99.29%, 99.53%]
Variable k Estimate SE t df p
Missing data
Intercept 84 0.80 0.04 21.46 82 <.001
Value 84 0.02 0.02 0.99 82 324
Note. CI= confidence interval.

#p values adjusted using the Holm method (n = 17 tests).

symptom of PPU compared to other symptoms (Bothe, Lonza, et al.,
2020). In particular, high-frequency pornography use may appear
without PPU (e.g., due to strong sexual desire), and self-perceived
PPU may be present even with low-frequency pornography use

(e.g., due to moral incongruence and disapproval of pornography)
(Bothe, Lonza, et al., 2020; Bothe, T6th-Kirdly, et al., 2020;
Chen, Jiang, Luo, et al., 2022; Grubbs, Lee, et al., 2020; Jiang et
al., 2022). Therefore, it is recommended to inquire about an
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individual’s pornography use frequency when assessing PPU, but
solely relying on the quantity (e.g., frequency) of use to determine
PPU can induce biases (Bothe, Lonza, et al., 2020; Bothe, Téth-
Kirdly, et al., 2020; Chen, Jiang, Luo, et al., 2022; Grubbs, Lee, et
al., 2020; Jiang et al., 2022).

Another category of predictors that emerged was related to
negative emotions (e.g., guilt, sexual shame, emotional avoidance
pornography use motivation). Corroborating prior work, these
findings suggest that individuals with PPU may experience
more negative emotions and turn to pornography as a means of
coping with them (Bothe, Téth-Kirdly, Bella, et al., 2021;
Floyd & Grubbs, 2022; Lew-Starowicz et al., 2020; Volk et al.,
2019). These findings are of special clinical interest as the previ-
ously proposed (but ultimately rejected) hypersexual disorder
diagnosis for the fifth revision of the Diagnostic and Statistical
Manual of Mental Disorders (American Psychiatric Association,
2013, 2022) included engagement in sexual activities as a response
to negative emotions and stress as a diagnostic criterion. In contrast,
the current CSBD diagnostic guidelines in the 11th revision of
the International Classification of Diseases do not consider sexual
activities as a response to negative emotions or stress as a criterion
(Gola et al., 2022; Kraus et al., 2018; Lew-Starowicz et al., 2020;
World Health Organization, 2022). Future studies are essential to
examine the roles of general (e.g., anxiety) and pornography-related
negative emotions (e.g., moral incongruence), emotion dysregula-
tion, and the use of pornography as a coping strategy to delineate
whether the inclusion of coping with negative emotions and/or stress
are warranted as a diagnostic criterion (Grubbs, Reid, et al., 2023).
These findings also highlight the importance of assessing anxiety,
depression, and negative emotions when diagnosing or treating
PPU, as mood disorders have been shown to be highly comorbid
with PPU and CSBD in general (Grant Weinandy et al., 2023;
Kraus et al., 2015).

From a public health perspective, psychiatric disorders are associated
with a high economic burden (Vigo et al., 2016; Whiteford et al., 2015).
With the identification of the strongest, most consistent, and generaliz-
able predictors of PPU, we provide knowledge concerning reliable
risk factors for PPU, which in turn, may contribute to the development
of more efficient, scientifically based, cost-effective prevention and
intervention programs. In addition, this study reported empirical evi-
dence about the relative importance of PPU risk factors, providing poten-
tial guidelines for future studies concerning which variables might be
important to assess, reducing cost and participant fatigue.

Limitations and Future Directions

As the study used data from self-report surveys, biases related to
this design may be present (e.g., recall bias). Despite the inclusion
of all accessible data sets at the time of data solicitation, studies
from WEIRD countries were still overrepresented, limiting gener-
alizability to other populations. Recent initiatives specifically
aimed at making CSBD and PPU research more inclusive (e.g.,
International Sex Survey) are ongoing and thus were not included
in this work (Bothe, Kods, et al., 2021). In addition, samples from
specific countries (e.g., China, Hungary, and the United States)
were overrepresented in the study, which might have biased the
findings. Cultural differences concerning pornography use and
PPU are documented in the literature, suggesting that, for example,
individuals in more conservative cultures (e.g., China) may report

higher self-perceived PPU due to stricter sexual values (Ahorsu
et al., 2023; Chen, Jiang, Wang, et al., 2022; Lewczuk et al.,
2020; Vaillancourt-Morel & Bergeron, 2019). Therefore, future
studies among more diverse populations are warranted, considering
potential cultural differences.

Given considerable unexplained heterogeneity in the study, future
work should further explore potential contributing factors. For example,
previous findings suggest that different scales aiming to assess the same
construct (e.g., depression) may demonstrate low levels of content over-
lap in the symptoms they assess (i.e., different scales may capture dif-
ferent aspects of the heterogeneous symptoms of depression). Thus, it
is possible that the selection of a particular scale may bias the results
as well as the generalizability and replicability of findings (Fried,
2017). Yet, it is important to note our findings suggested that the use
of different PPU scales (i.e., the outcomes in the random forest models)
did not contribute to the heterogeneity of the results. Future studies are
encouraged to examine the potential role of using different scales to
assess predictors in random forest models and related biases.

Future research would also benefit from the use of observational
and clinical data as well as medical records to examine the utility
of more objective data in predicting PPU (Dwyer et al., 2018;
Walsh et al., 2018). Although the study originally sought to examine
the predictors of change in PPU over time using longitudinal sam-
ples, it was not possible to do so given the relatively low number
of studies, the high levels of missing data, and the lack of (linear)
change in PPU over time. Further long-term longitudinal studies
with several assessment waves, especially among adolescents, clin-
ical samples, and couples, are warranted (Grubbs & Kraus, 2021;
Grubbs, Hoagland, et al., 2020).

Conclusion

Despite the proliferation of research on PPU and CSBD, knowledge
of risk factors has been severely limited due to the theoretical and
methodological shortcomings of prior studies (Griffin et al., 2021;
Grubbs & Kraus, 2021; Grubbs, Hoagland, et al., 2020).
Synthesizing a large and diverse body of data related to PPU, the pre-
sent study identified crucial risk factors for PPU, providing a better
understanding of PPU’s etiology and an empirical basis for the refine-
ment of current theoretical models as well as scientifically based pre-
vention and treatment targets (Yarkoni & Westfall, 2017).
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